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Hearing and balance rely on the ability of hair cells in the inner ear
to sense miniscule mechanical stimuli. In each cell, sound or
acceleration deflects the mechanosensitive hair bundle, a tuft of
rigid stereocilia protruding from the cell’s apical surface. By alter-
ing the tension in gating springs linked to mechanically sensitive
transduction channels, this deflection changes the channels’ open
probability and elicits an electrical response. To detect weak stimuli
despite energy losses caused by viscous dissipation, a hair cell can
use active hair-bundle movement to amplify its mechanical inputs.
This amplificatory process also yields spontaneous bundle oscilla-
tions. Using a displacement-clamp system to measure the mechan-
ical properties of individual hair bundles from the bullfrog’s ear,
we found that an oscillatory bundle displays negative slope stiff-
ness at the heart of its region of mechanosensitivity. Offsetting the
hair bundle’s position activates an adaptation process that shifts
the region of negative stiffness along the displacement axis.
Modeling indicates that the interplay between negative bundle
stiffness and the motor responsible for mechanical adaptation
produces bundle oscillation similar to that observed. Just as the
negative resistance of electrically excitable cells and of tunnel
diodes can be embedded in a biasing circuit to amplify electrical
signals, negative stiffness can be harnessed to amplify mechanical
stimuli in the ear.

Uniquely among sensory receptors, the hair cells in the ears
of tetrapod vertebrates use mechanical feedback to amplify

their inputs. Mechanical amplification endows these animals
with both exquisite auditory sensitivity and sharp frequency
discrimination (reviewed in refs. 1–3). More specifically, by
providing energy to compensate for that lost to viscous dissipa-
tion in the ear’s f luids, the amplifier permits each receptor organ
to act as a highly tuned resonator (4). The ear’s active process is
characterized by metabolic vulnerability, an intimation of pow-
ered amplification, and by the spontaneous emission of sounds
in a quiet environment, a sign of excess feedback gain.

The mechanism by which mechanical energy is produced by
the vertebrate inner ear remains uncertain. The active process of
mammals is thought to involve electromotility, a voltage-induced
change in the length of the outer hair cell (reviewed in refs. 5–7).
In nonmammalian tetrapods, whose hair cells lack electromo-
tility, amplification apparently involves active hair-bundle move-
ments. In response to abrupt deflections, active hair bundles can
twitch, performing work against an external load (8). Active
bundles can exhibit spontaneous oscillations (9–11) that may
underlie spontaneous otoacoustic emissions. Finally, spontane-
ously oscillatory hair bundles can amplify periodic mechanical
stimuli (12). In the present work, we have examined the
mechanical properties of active hair bundles under displace-
ment-clamp conditions. By so doing, we have identified a mech-
anism by which hair bundles produce oscillations and effect
amplification.

Materials and Methods
Saccular maculae were dissected from bullfrogs (Rana catesbei-
ana) and maintained at room temperature in a two-
compartment experimental chamber as described previously
(12). The solution in the upper compartment, which bathed the

apical hair-cell surfaces including the hair bundles, was oxygen-
ated N-methyl-D-glucamine (NMDG) endolymph consisting of 2
mM Na1, 3 mM K1, 0.25 mM Ca21, 110 mM NMDG, 118 mM
Cl2, 3 mM D-glucose, and 5 mM Hepes. The solution in the lower
compartment, which contacted the basolateral cellular surfaces,
was oxygenated standard saline solution containing 110 mM
Na1, 2 mM K1, 4 mM Ca21, 122 mM Cl2, 3 mM D-glucose, and
5 mM Hepes. Each solution had a pH of '7.3 and an osmotic
strength of '230 mmolzkg21.

After removal of the otolithic membrane (12), the preparation
was mounted on the stage of an upright microscope (MPS, Zeiss)
and illuminated with a mercury lamp equipped with heat filters
and a bandpass filter of 500 6 40 nm (center wavelength 6 range
to half transmittance). While the macular epithelium was ob-
served under a 340 water-immersion objective lens of numerical
aperture 0.75, the kinociliary bulb of an individual hair bundle
was attached to the tip of a sputter-coated glass fiber '100 mm
in length and '0.5 mm in diameter (8, 12). Each fiber had a
stiffness of 70–310 mNzm21 and a drag coefficient of 25–105
nNzszm21. An image of the fiber’s tip was magnified 31,000 and
projected onto a dual photodiode, from whose output bundle
displacements could be measured with a precision of '1 nm.
Before each measurement of the fiber’s motion, the system was
calibrated by displacing the photodiode with a 20-mm pulse
delivered by a piezoelectrical actuator.

In displacement-clamp experiments, the fiber’s base was
driven by a piezoelectrical stimulator connected to a negative-
feedback system. The original clamp circuit (8, 13), which
provided only proportional gain, was supplemented with differ-
ential and integral components to accelerate feedback respon-
siveness and improve steady-state tracking (14).

Stimuli and responses were filtered at 1 kHz with an eight-pole
Bessel filter, sampled at 2.5 kHz, and acquired with LABVIEW
(version 5.0, National Instruments, Austin, TX). Using KALEI-
DAGRAPH (version 3.0.9, Synergy Software, Reading, PA) to fit
data from displacement-force relations to Eq. 2, we obtained
values for the parameters K`, N, and z. We additionally com-
bined Eqs. 2, 4, and 5 to independently fit the data and estimate
the values of KSP, k, and d.

Hair-bundle oscillation was modeled by describing the me-
chanical forces on and within a hair bundle (8, 15), including that
caused by adaptation. The adaptation motor was assigned a
constant climbing rate of 0.1 mmzs21 and a slippage rate depen-
dent on the stereociliary Ca21 concentration and the tension in
each gating spring (16). The Ca21 concentration was calculated
for three-dimensional diffusion, with a diffusion coefficient of
800 mm2zs21, to a binding site 10 nm from a transduction channel
(17). In the presence of endolymph and at a resting potential of
260 mV, Ca21 was specified to carry 3% of the transduction
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current (18) through a channel of conductance 90 pS (19) and of
resting open probability 0.45. The Ca21-binding site of the
adaptation motor was characterized by an association rate
constant of 108 s21zM21 and a dissociation rate constant of 20z103

s21. The slippage rate constant then depended hyperbolically on
the binding site’s probability of occupation; the maximal value
was 560z103 mzs21zN21. The model’s differential equations were
solved with MATHEMATICA (version 4.0.1.0, Wolfram Research,
Champaign, IL).

Results
By mechanically characterizing active hair bundles from the
bullfrog’s sacculus, we sought to identify the basis of their
spontaneous oscillation and amplification. We first simulated in
vitro the ear’s peculiar ionic environment, in which hair cells
separate fluids of differing ionic composition. Hair bundles were
immersed in low-Na1, low-Ca21 NMDG endolymph, whereas
the cells’ basolateral surfaces were bathed in a high-Na1 ionic
milieu resembling ordinary extracellular fluid (12). As measured
by the motion of a tightly coupled glass fiber, a hair bundle under
these circumstances routinely displayed spontaneous oscillation
at 5–40 Hz with a peak-to-peak amplitude as great as 50 nm (Fig.
1A). Spontaneous hair-bundle oscillation often persisted
through an hour or more of continuous recording. The bundle’s
motion resembled the relaxation oscillations encountered in

many dynamical systems: in each half cycle, a slow excursion
concluded with an abrupt stroke in the opposite direction
(reviewed in ref. 20, pp. 211–215).

Displacement-Clamp Measurement of Bundle Forces. Using a
displacement-clamp circuit to control the position of the fiber’s
tip (8, 13), we effectively stiffened the fiber until we suppressed
the bundle’s spontaneous motion. We were then able to measure
the forces required to displace the bundle by distances up to 670
nm in its plane of symmetry. These responses were complex (Fig.
1B), for they included two components in addition to the
instantaneous elastic restoring force of the hair bundle (21). The
outset of each force record was marked by a transient caused by
the hydrodynamic drag on the bundle and fiber as they rapidly
approached their commanded displacement (8). This drag force
reflected the viscous drag coefficients of the hair bundle and
stimulus fiber, respectively jHB and jSF, as well as the rate of
displacement:

FD 5 ~jHB 1 jSF!
dX
dt

. [1]

The latter portion of each record was dominated by the force
caused by adaptation, the process that resets a hair bundle’s
position of mechanosensitivity in response to an externally

Fig. 1. (A) Spontaneous oscillation at '7 Hz of a hair bundle from the bullfrog’s sacculus. Note the alternation between slow bundle movements and rapid
strokes in the opposite direction. (B) Measurement of the relation between hair-bundle displacement (lower family of traces) and applied force (upper traces).
Under displacement-clamp conditions, a bundle was deflected distances up to 670 nm in steps of '5 nm. Seven typical responses are plotted, each an average
of 20 repetitions; the corresponding hair-bundle displacements are given to the right. A step command initially evoked a viscous-force transient in the direction
of bundle movement; the force then changed slowly as the bundle adapted to its new position. The elastic response of the hair bundle was measured soon after
the viscous response had vanished but before adaptation had progressed significantly; the measurement window of 5–10 ms from the onset of the stimulus is
enclosed by vertical dashed lines. For displacements of 612 nm, the direction of bundle displacement was opposite in sign to the force applied; the bundle’s chord
stiffness, FSFyX, was therefore negative. Almost no force was required to displace the bundle by 622 nm. Finally, at 637 nm, the bundle behaved as an ordinary
spring with positive stiffness. (C) Displacement-force relation measured under displacement-clamp conditions. Each point represents a bundle displacement and
the corresponding force exerted by the fiber, as averaged over the time window designated in B. The continuous curve is the best fit of the data by Eq. 2, for
which K` 5 1,090 mNzm21, N 5 65, z 5 0.72 pN, F0 5 25 pN, and X0 5 22.2 nm. In this and the subsequent figure, as well as in all data analysis, the curve was
not constrained to pass through the origin.
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imposed deflection (22). We made force measurements 5–10 ms
after the onset of a displacement step, as soon as the viscous-drag
transient had concluded but before significant adaptation had
occurred.

When displaced extensively along its axis of mechanosensitiv-
ity, an active hair bundle behaved as an ordinary spring of
constant stiffness (Fig. 1C). Within 620 nm of the resting
position, however, the stiffness varied significantly with displace-
ment. This nonlinearity was related to the gating of transduction
channels, for blockage of channel gating with iontophoretically
applied gentamicin (23) reversibly linearized the response (not
shown). The striking feature of our recordings was that, for
displacements in the range of 610 nm, the hair bundle’s slope
stiffness actually became negative. Within this interval, in other
words, displacement of the bundle in either direction required
the application of force in the opposite.

Our data were well fit by a gating-spring model in which
mechanoelectrical transduction channels operating in parallel
adopt either an open or a closed state (reviewed in refs. 15 and
24). The force FSF applied by the stimulus fiber to deflect the
bundle a distance X is given by

FSF 5 K`X 2 NpO z 1 F0, [2]

in which the externally applied force is opposed by the bundle’s
linear stiffness K` and includes a constant offset F0 (15, 21). The
negative term reflects gating compliance, a consequence of the
direct mechanical gating of transduction channels (21). As they
open or close, the N channels exert a force on average in the same
direction as the hair bundle’s displacement, resulting in an
apparent softening of the bundle. This gating force increases in
proportion to the single-channel gating force z and to the mean
channel open probability pO,

pO 5
1

1 1 e 2 z~X 2 X0!y~kT! . [3]

Here X0 is the position at which the open probability is one half,
k the Boltzmann constant, and T the temperature. Our results
are consistent with the idea (11, 24) that gating compliance can
be so great over a range of displacements as to dominate the
stiffnesses of other hair-bundle components and render the
bundle’s overall stiffness negative. Similar relations were mea-
sured for a total of 20 hair bundles that displayed spontaneous
oscillations; the maximal negative stiffnesses lay in the range 293
mNzm21 to 2993 mNzm21 and averaged 2360 6 240 mNzm21

(mean 6 SD, n 5 23 measurements). For the same set of
measurements, the average values of the principal parameters
were K` 5 680 6 360 mNzm21, N 5 47 6 31, and z 5 0.67 6 0.26
pN. Negative stiffness was repeatedly demonstrable in a given
cell; whenever the displacement-clamp circuit was disengaged,
though, spontaneous bundle oscillation resumed.

Mechanical Biasing of the Hair Bundle. Under displacement-clamp
conditions, the fiber’s effective stiffness countered the bundle’s
negative stiffness, rendering the combined system stable
throughout the range of deflections. The negative-stiffness
region was unstable, however, in that a free or weakly loaded
bundle could not have settled there but would have been rejected
to a position of force balance in a flanking region of positive
stiffness. We reasoned that a hair bundle might become a
mechanical oscillator or amplifier if some mechanically active
element repeatedly biased the bundle—that is, forced it to
operate—in its region of negative stiffness.

To demonstrate mechanical biasing of the hair bundle, we
used the displacement clamp to offset the bundle by amounts in
the range of 640 nm. By bringing the bundle outside its region
of negative stiffness, we mimicked a free bundle’s movement to

escape this unstable region. After allowing 70–100 ms for
adaptation to conclude, we again measured the displacement-
force relation. We found that the relation had indeed shifted
along the displacement axis in the direction of the applied offset
(Fig. 2), relocating the region of negative stiffness near the offset
position. The shift was incomplete, however; for a sample of
eight hair bundles offset by 10–63 nm in either direction, the
displacement-force relation shifted on average by 82% 6 11%
(mean 6 SD, n 5 32 measurements) of the imposed offset. This
degree of shift agrees well with previous observations of the
extent of adaptation, which for small displacements is '80% (10,
16, 22, 25, 26). The average slope along which the displacement-
force relation shifted was 460 6 300 mNzm21 (mean 6 SD, n 5
13 shifts, 8 cells). This result is not inconsistent with the
expectation that adaptation should translocate the relation along
a line of positive slope corresponding to the stereociliary pivots’
stiffness (15).

Discussion
Negative Stiffness in Hair Bundles. In measurements of the me-
chanical properties of hair bundles under displacement-clamp
conditions, we consistently observed that oscillatory bundles
display negative stiffness. For each of the 20 hair bundles that we
examined, the displacement-force relation resembled those
illustrated (Figs. 1 and 2) and was fit by the two-state model
(Eq. 2) with a regression coefficient of r . 0.99. In the simplest
formulation of the gating-spring model for transduction (ref.
27; reviewed in refs. 15, 24), the single-channel gating force is
given by

z ; gkd , [4]

in which g is the geometrical gain between hair-bundle displace-
ment and gating-spring extension, whose value is g ' 0.14 (21),
k is the stiffness of a single gating spring, and d is the distance

Fig. 2. Migration of the displacement-force relation during adaptation. The
central, black curve was obtained by measuring the forces necessary to dis-
place the clamped hair bundle by the indicated distances from its initial
position. The curves at the right resulted from similar measurements taken 100
ms after the bundle had been offset and held 16 nm (orange) or 33 nm (red)
in the positive direction. The left curves (cyan and blue, respectively) stemmed
from offsets of the same magnitude in the negative direction. The arrows at
the illustration’s bottom mark the offset positions. The five curves were fit
with parameter values in the ranges K` 5 570–690 mNzm21, N 5 44–56, and
z 5 0.53–0.64 pN. The maximal negative stiffnesses varied between 2400
mNzm21 and 2900 mNzm21. The relations shifted along a line of slope 400
mNzm21.
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by which a gating spring shortens as a channel opens. From our
results, the stiffness of a single gating spring is k 5 570 6 250
mNzm21 (mean 6 SD, n 5 23 measurements), a value in accord
with earlier determinations of 400–500 mNzm21 (13, 21). The
bundle’s linear stiffness includes components caused by the
gating springs and the stereociliary pivots:

K` 5 Ng2k 1 KSP, [5]

in which KSP is the combined stiffness of the stereociliary pivots.
For the same sample, KSP 5 190 6 130 mNzm21, a result in
reasonable agreement with previous estimates of 180–650
mNzm21 (13, 21, 28).

Our data indicate that the distance by which a gating spring
shortens as a channel opens is d 5 8.2 6 1.5 nm (mean 6 SD,
n 5 23 measurements), a value well in excess of the prior
estimate of 4 nm (ref. 21; see also ref. 19). The physical
interpretation of this result is unclear. Although the distance
seems too large to reflect the movement of a channel’s pore-
obstructing gate, the value would be plausible if the gating spring
were attached to the gate by a molecular lever. The estimated
movement could alternatively be an overestimate of the actual
gating distance if the gating spring were nonlinear. Finally, the
displacement-force relation could have been affected by the
presence of significant compliance in the linkage between the
fiber and bundle. The displacement-clamp system controlled the
position of the series combination of the bundle and the linkage,
whose combined stiffness, KC, is given by

KC 5 kHB3 1

1 1 SkHB

KL
D4 . [6]

Here KHB is the hair bundle’s actual stiffness, as given by Eq. 2,
and KL is that of the linkage. For large displacements, the hair
bundle behaved as a spring of positive stiffness K`. In the
presence of a compliant linkage, the measured stiffness would
therefore have been less than the bundle’s true stiffness. For
small displacements, on the contrary, the measured stiffness was
negative. Because successful clamping required the linkage’s
stiffness to exceed the hair bundle’s negative stiffness in mag-
nitude, the measured magnitude of the negative stiffness would
have exceeded that of the bundle. As a result, we would have
underestimated N and overestimated z and therefore d. Series
compliance could not have produced negative stiffness, however,
and does not alter the conclusion that a high value of d underlies
the phenomenon.

It has been suggested that the estimated movement on channel
opening would be halved if an identical channel occurred at each
end of a gating spring (19). If z is great enough to produce
negative stiffness in the displacement-force relation, however,
negative cooperativity between each pair of channels should
introduce a second region of negative stiffness, a phenomenon
that we never observed. Our data are consistent with the
presence of a channel at either end of each gating spring, for
example at the upper or the lower end of each filament in a tip
link, but suggest that most gating springs do not have equivalent
channels at both ends.

A Model for Hair-Bundle Oscillation. What is the utility of negative
stiffness, of which we are aware of no previous demonstration in
a biological system? Negative resistance, an electrical analog of
negative stiffness that occurs in physical devices such as tunnel
diodes, serves engineers in the design of electrical oscillators and
amplifiers (29). The membrane voltage-current relations of
neurons and other excitable cells also display negative resistance,
which underlies these cells’ ability to generate action potentials
(reviewed in ref. 30). In both the physical and the biological

examples, oscillation or amplification ensues when the relevant
system is biased into its region of negative resistance.

Mechanical biasing of the hair bundle requires an active
element that can exert force on the bundle. Two lines of evidence
suggest that this biasing element is the myosin motor that
mediates mechanical adaptation (reviewed in refs. 31–33), the
process that partially restores the open probability of the trans-
duction channels to its original value during a sustained stimulus.
First, in NMDG endolymph containing 250 mM Ca21, the
adaptation motor reaches a steady state for a channel open
probability near one-half (25, 27). As required for biasing of a
hair bundle to an unstable position, this probability corresponds
to a bundle position well within the negative-stiffness region.
Second, computer modeling of the bundle’s mechanical behavior
using measured values for the rate of mechanoelectrical adap-
tation (22, 25) generates spontaneous hair-bundle oscillation at
the observed frequency.

An interplay between adaptation and the hair bundle’s neg-
ative slope stiffness explains the bundle’s spontaneous oscilla-
tions. In this model (Fig. 3A), the slow component of each half
cycle reflects the activity of the adaptation motors, which move
the bundle toward the region of negative stiffness. The fast
component, in which the hair bundle lurches across this unstable
region, amounts to a first-order phase transition: the opening or
closing of each transduction channel produces a force on the
bundle that impels other channels to follow suit, resulting in a
molecular avalanche during which most of the channels open or
close cooperatively. If the position at which the adaptation motor
would be at rest lies within the negative-slope region, a free or
weakly loaded hair bundle cannot reside there. The bundle is
therefore forced to oscillate (Fig. 3 B and C), perpetually
frustrated in its attempt to find repose at a thermodynamically
unstable position. The instability that underlies this oscillation
persists so long as the magnitude of the bundle’s negative
stiffness exceeds the stiffness of the external load.

Although the present report concentrates on spontaneously
oscillatory hair bundles, negative slope stiffness may occur in
quiescent bundles as well. So long as the channel open proba-
bility at which the adaptation motor reaches a steady state lies
outside the region of instability, even a bundle with negative
stiffness has a stable resting position. If negative stiffness occurs
in a hair bundle exposed to standard saline solution, for example,
the resting open probability of '0.15 (25, 26, 34, 35) would
correspond to a bundle position negative to the unstable region.
Displacing such a bundle into the region of negative stiffness,
however, should trigger movements resembling a single cycle of
oscillation: after leaping in the positive direction, the bundle
would experience adaptation until it jumped back to a steady-
state position with a channel open probability near the original
value. The correspondence between this expected trajectory and
the twitch observed when an unclamped hair bundle is tran-
siently displaced in the positive direction (8, 10, 21) suggests that
negative stiffness underlies the twitch. Although the fact that
hair bundles occasionally oscillate in standard saline solution
(10) also implies that negative slope stiffness can occur in that
medium, the rapidity of adaptation in high-Ca21 conditions may
have prevented the direct observation of negative stiffness to
date.

Mechanism of Amplification by Active Hair-Bundle Movement. The
negative-stiffness instability can effect amplification of mechan-
ical stimuli in two ways. First, when the hair bundle’s negative
stiffness dominates the load, the bundle undergoes large spon-
taneous oscillations. Because the bundle is buffeted by thermal
noise, these mechanical oscillations are irregular (Fig. 1 A) and
display a diffuse power spectrum centered on a characteristic
frequency. When even a tiny sinusoidal stimulus is applied near
this characteristic frequency, however, entrainment occurs and
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the power expended by the hair cell is funneled into the stimulus
frequency (12). As the strength of stimulation grows and bundle
movements become more regular, the stimulus magnitude
should be encoded first in increasing phase coherence of bundle
motion, then in successively larger movements (36). The com-
parable behavior of neural responses in the avian auditory nerve
(37) might stem from this amplification mechanism.

An alternative means of amplification operates when the
bundle’s negative stiffness almost exactly balances the load’s
stiffness. In this event, the slope of the combined displacement-

force relation is nearly zero near the origin, so a very small
stimulus force produces a large displacement and a correspond-
ingly great change in channel open probability. The system is
then poised on the verge of the oscillatory instability, at a Hopf
bifurcation (reviewed in ref. 20, pp. 248–253). This situation is
uniquely advantageous for sharply tuned, high-gain amplifica-
tion of weak periodic stimuli, in which the frequency of spon-
taneous oscillation at the bifurcation defines the resonant fre-
quency (36, 38, 39). Consistent with the relevance of this
mechanism, the negative stiffness values reported here overlap
the stiffness of the otolithic membrane that constrains hair
bundles in vivo (40).

Domain of Amplification by Active Hair-Bundle Movement. All of the
major classes of tetrapod vertebrate display an aural active
process characterized by high sensitivity, sharp frequency selec-
tivity, metabolic vulnerability, and otoacoustic emissions (re-
viewed in ref. 3). The range of animals in which active hair-
bundle movements play a role in amplification, however, remains
uncertain. Although the hair bundles of fishes are capable of
slow spontaneous and evoked motions (41, 42), the phenomenon
has not been investigated in detail. Active bundle movements
have been extensively documented in amphibians and reptiles;
birds, too, possess mechanically active hair bundles (reviewed in
ref. 43). Slow hair-bundle motions associated with adaptation
have been observed in mammalian hair cells (44, 45), but rapid,
active bundle movements have not been reported. Mechanical
amplification by active hair-bundle motions may therefore be a
widespread phenomenon, but it remains unclear whether this
mechanism operates throughout the vertebrates.

The most important uncertainty about active hair-bundle
movements is their potential utility for high-frequency hearing in
mammals, whose hair cells can be tuned to stimulus frequencies
exceeding 100 kHz (46) and can produce vigorous spontaneous
otoacoustic emissions at frequencies up to '60 kHz (47).
Because the extension of the hearing range to high frequencies
coincides with the evolution of outer hair cells (reviewed in refs.
2, 3), it is generally believed that these cells’ electromotility, or
mechanical responsiveness to transmembrane voltage, consti-
tutes the aural amplifier in mammals (reviewed in refs. 5–7, but
see ref. 48). Although the physiological mechanism of high-
frequency electrical stimulation remains uncertain, electromo-
tility indeed operates with singular rapidity, displaying a high-
frequency cutoff during direct electrical stimulation of 20–80
kHz (49–51). Active hair-bundle movements, by contrast, have
not yet been shown to occur at frequencies above a few hundred
hertz.

At the same time, a contribution of bundle motility to high-
frequency amplification cannot be excluded. Active movements
might be powered by additional processes faster than the step-
ping of myosin, for example by Ca21-mediated channel reclosure
(21, 38). Even if myosin’s power strokes drive amplification,
adjustment of the mechanoenzyme’s ATP-hydrolytic rate con-
stants for operation at mammalian body temperature suggests
that myosin can participate in mechanical oscillation at frequen-
cies of several kilohertz (reviewed in ref. 31). Moreover, coupling
of the force production by an ensemble of myosin molecules to
a hair bundle’s passive mechanical properties can potentially
yield oscillation at frequencies well in excess of the rate of ATP
hydrolysis (36, 52). Only two ingredients are necessary to endow
hair bundles with the ability to amplify their mechanical inputs
by the mechanism described here: a region of negative stiffness
in the displacement-force relation and a biasing element such as
that provided by the adaptation motor. Because both gating
compliance (53, 54) and adaptation (44, 45) have been demon-
strated in mammalian hair cells, active bundle movements driven
by the adaptation motor may provide an additional or alternative
source of amplification in the mammalian cochlea as well.

Fig. 3. A model of the hair bundle’s spontaneous oscillation. (A) The channel
open probability equilibrates with the tension in the gating springs on a time
scale much faster than that of adaptation. Under this quasistatic condition, a
free bundle must reside at a point of zero force. The region of negative slope
stiffness in the initial displacement-force relation (dashed black curve) implies
that the bundle is bistable: there are two such points (green stars). Assuming
that the bundle first occupies the negative stable point, the transduction
channels’ low open probability causes adaptation to shift the displacement-
force relation in the negative direction. The shift proceeds with a slope set by
the stiffness of the stereociliary pivots (ref. 15; dotted green lines). When the
relation’s left-sided local maximum becomes tangent to the abscissa (at point
1 on the blue curve), however, the negative stable point vanishes, and the
bundle must leap to the positive stable point (point 2) to maintain the
zero-force condition. For the parameter values of Fig. 1C, this transition
corresponds to an abrupt increase in the channel’s open probability from 0.15
to 1.0. At the bundle’s new position, the channels’ high open probability
promotes adaptation in the opposite direction until the bundle’s position
corresponds to the right-sided local minimum of the displacement-force
relation (point 3 on the red curve) and the bundle jumps in the negative
direction (to point 4). The channel’s open probability correspondingly plum-
mets from 0.85 to 0.0. Oscillation ensues from repetition of this sequence. (B)
Trajectory (13 23 33 4) of the hair bundle along the displacement-force
relation as this relation undergoes the adaptive shift depicted in A. The double
arrows indicate the fast transitions across the unstable region of negative
stiffness (1 3 2 and 3 3 4), whereas the single arrows demarcate the slow
adaptive movements along the stable branches of the relation (23 3 and 43
1). C, Hair-bundle oscillation produced by a model of bundle mechanics that
incorporates the parameter values for the cell whose response is depicted in
Fig. 1A. The numbers relate phases of the oscillation to points on the dis-
placement-force relations of A and B.
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